
1

by Phil Factor

2

TABLE OF CONTENTS

Introduction

1. Problems with Database Design

2. Problems with Table Design

3. Problems with Data Types

4. Problems with Expressions

5. Difficulties with Query Syntax

6. Problems with Naming

7. Problems with Routines

8. Security Loopholes

Acknowledgements

3

5

10

17

22

27

42

45

68

70

3

Introduction
Once you’ve done a number of SQL code-reviews,
you’ll be able to spot signs in the code that indicate
all might not be well. These ‘code smells’ are
coding styles that, while not bugs, suggest design
problems with the code.

Kent Beck and Massimo Arnoldi seem to have coined the term ‘Code Smell’
in the ‘Once And Only Once’ page of www.C2.com, where Kent also said that
code ‘wants to be simple’. Kent Beck and Martin Fowler expand on the issue
of code challenges in their essay ‘Bad Smells in Code’, published as Chapter
3 of the book Refactoring: Improving the Design of Existing Code (ISBN 978-
0201485677).

Although there are generic code smells, SQL has its own particular habits that
will alert the programmer to the need to refactor code. (For grounding in code
smells in C#, see ‘Exploring Smelly Code’ and ‘Code Deodorants for Code
Smells’ by Nick Harrison.) Plamen Ratchev’s wonderful article Ten Common
SQL Programming Mistakes’ lists some of these code smells along with out-
and-out mistakes, but there are more. The use of nested transactions, for
example, isn’t entirely incorrect, even though the database engine ignores
all but the outermost, but their use does flag the possibility the programmer
thinks that nested transactions are supported.

http://www.c2.com/cgi/wiki?CodeSmell
http://www.c2.com/cgi/wiki?OnceAndOnlyOnce
https://www.simple-talk.com/dotnet/.net-framework/exploring-smelly-code/
https://www.simple-talk.com/dotnet/.net-framework/code-deodorants-for-code-smells/
https://www.simple-talk.com/dotnet/.net-framework/code-deodorants-for-code-smells/
https://www.simple-talk.com/sql/t-sql-programming/ten-common-sql-programming-mistakes/'
https://www.simple-talk.com/sql/t-sql-programming/ten-common-sql-programming-mistakes/'

4

If you are moving towards continuous delivery of database applications, you
should automate as much as possible the preliminary SQL code-review. It’s a
lot easier to trawl through your code automatically to pick out problems, than
to do so manually. Imagine having something like the classic ‘lint’ tools used
for C, or better still, a tool similar to Jonathan ‘Peli’ de Halleux’s Code Metrics
plug-in for .NET Reflector, which finds code smells in .NET code.

One can be a bit defensive about SQL code smells. I will cheerfully write very
long stored procedures, even though they are frowned upon. I’ll even use
dynamic SQL on occasion. You should use code smells only as an aid. It is
fine to ‘sign them off’ as being inappropriate in certain circumstances. In fact,
whole classes of code smells may be irrelevant for a particular database. The
use of proprietary SQL, for example, is only a code smell if there is a chance
that the database will be ported to another RDBMS. The use of dynamic SQL is
a risk only with certain security models. Ultimately, you should rely on your own
judgment. As the saying goes, a code smell is a hint of possible bad practice
to a pragmatist, but a sure sign of bad practice to a purist.

In describing all these code-smells in a booklet, I’ve been very constrained on
space to describe each code-small. Some code-smells would require a whole
article to explain them properly. Fortunately, SQL Server Central and Simple-
Talk have, between them, published material on almost all these code smells,
so if you get interested, please explore these essential archives of information.

https://www.simple-talk.com/opinion/geek-of-the-week/peli-de-halleux-geek-of-the-week/

5

Problems with
Database Design

1

Packing lists, complex data, or
other multivariate attributes into
a table column
It is permissible to put a list or data document in a column only if
it is, from the database perspective, ‘atomic’, that is, never likely
to be shredded into individual values; in other words, it is fine as
long as the value remains in the format in which it started. You
should never need to split an ‘atomic’ value. We can deal with
values that contain more than a single item of information: We
store strings, after all, and a string is hardly atomic in the sense
that it consists of an ordinally significant collection of characters
or words. However, the string shouldn’t represent a list of
values. If you need to parse the value of a column to access
values within it, it is likely to need to be normalised, and it will

certainly be slow. Occasionally, a data object is too
complicated, peripheral, arcane or ephemeral

to be worth integrating with the database’s
normalised structure. It is fair to then

take an arm’s-length approach and
store it as XML, but in this case it will
need to be encapsulated by views
and table-valued functions so that
the SQL Programmer can easily
access the contents.

1.1

6

Using inappropriate data types
Although a business may choose to represent a date as a single
string of numbers or require codes that mix text with numbers, it is
unsatisfactory to store such data in columns that don’t match the
actual data type. This confuses the presentation of data with its
storage. Dates, money, codes and other business data can be
represented in a human-readable form, the ‘presentation’ mode, they
can be represented in their storage form, or in their data-interchange
form. Storing data in the wrong form as strings leads to major issues
with coding, indexing, sorting, and other operations. Put the data into
the appropriate ‘storage’ data type at all times.

Storing the hierarchy structure in the
same table as the entities that make
up the hierarchy
Self-referencing tables seem like an elegant way to represent
hierarchies. However, such an approach mixes relationships
and values. Real-life hierarchies need more than a parent-child
relationship. The ‘Closure Table’ pattern, where the relationships are
held in a table separate from the data, is much more suitable for real-
life hierarchies. Also, in real life, relationships tend have a beginning
and an end, and this often needs to be recorded. The HIERARCHYID
data type and the common language runtime (CLR) SqlHierarchyId
class are provided to make tree structures represented by self-
referencing tables more efficient, but they are likely to be appropriate
for only a minority of applications.

1.2

1.3

7

Using a polymorphic association
Sometimes, one sees table designs which have ‘keys’ that can
reference more than one table, whose identity is usually denoted by a
separate column. This is where an entity can relate to one of a
number of different entities according to the value in another column
that provides the identity of the entity. This sort of relationship cannot
be subject to foreign key constraints, and any joins are difficult for the
query optimizer to provide good plans for. Also, the logic for the joins
is likely to get complicated. Instead, use an intersection table, or if
you are attempting an object-oriented mapping, look at the method by
which SQL Server represents the database metadata by creating an
‘object’ supertype class that all of the individual object types extend.
Both these devices give you the flexibility of design that polymorphic
associations attempt.

1.5

Using an Entity Attribute Value
(EAV) model
The use of an EAV model is almost never justified and leads to very
tortuous SQL code that is extraordinarily difficult to apply any sort
of constraint to. When faced with providing a ‘persistence layer’ for
an application that doesn’t understand the nature of the data, use
XML instead. That way, you can use XSD to enforce data constraints,
create indexes on the data, and use XPath to query specific elements
within the XML. It is then, at least, a reliable database, even though it
isn’t relational!

1.4

8

Creating tables as ‘God Objects’
‘God Tables’ are usually the result of an attempt to encapsulate
a large part of the data for the business domain in a single wide
table. This is usually a normalization error, or rather, a rash and over-
ambitious attempt to ‘denormalise’ the database structure. If you have
a table with many columns, it is likely that you have come to grief on
the third normal form. It could also be the result of believing, wrongly,
that all joins come at great and constant cost. Normally they can be
replaced by views or table-valued functions. Indexed views can have
maintenance overhead but are greatly superior to denormalisation.

Contrived interfaces
Quite often, the database designer will need to create an interface
to provide an abstraction layer, between schemas within a database,
between database and ETL process, or between a database and
application. You face a choice between uniformity, and simplicity.
Overly complicated interfaces, for whatever reason, should never
be used where a simpler design would suffice. It is always best to
choose simplicity over conformity. Interfaces have to be clearly
documented and maintained, let alone understood.

1.6

1.7

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

9

Using command-line and OLE
automation to access server-based
resources
In designing a database application, there is sometimes functionality
that cannot be done purely in SQL, usually when other server-based,
or network-based, resources must be accessed. Now that SQL
Server’s integration with PowerShell is so much more mature, it
is better to use that, rather than xp_cmdshell or sp_OACreate (or
similar), to access the file system or other server-based resources.
This needs some thought and planning: You should also use SQL
Agent jobs when possible to schedule your server-related tasks. This
requires up-front design to prevent them becoming unmanageable
monsters prey to ad-hoc growth.

1.8

10

Using constraints to restrict
values in a column
You can use a constraint to restrict the values permitted in a
column, but it is usually better to define the values in a separate
‘lookup’ table and enforce the data restrictions with a foreign key
constraint. This makes it much easier to maintain and will also
avoid a code-change every time a new value is added to the
permitted range, as is the case with constraints.

Problems with Table
Design

Not using referential integrity
constraints
One way in which SQL Server maintains data integrity is by
using constraints to enforce relationships between tables. The
query optimizer can also take advantage of these constraints
when constructing query plans. Leaving the constraints off in
support of letting the code handle it or avoiding the overhead is a
common code smell. It’s like forgetting to hit the ‘turbo’ button.

2

2.1

2.2

Enabling NOCHECK on referential
integrity constraints
Some scripting engines disable referential integrity during
updates. You must ensure that WITH CHECK is enabled or else
the constraint is marked as untrusted and therefore won’t be
used by the optimizer.

BP019- Foreign key is disabled

2.3

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp019

11

Using too many or too few
indexes
A table in a well-designed database with an
appropriate clustered index will have an optimum
number of non-clustered indexes, depending on
usage. Indexes incur a cost to the system since they
must be maintained if data in the table changes. The
presence of duplicate indexes and almostduplicate
indexes is a bad sign. So is the presence of unused
indexes. SQL Server lets you create completely
redundant and totally duplicate indexes. Sometimes
this is done in the mistaken belief that the order of
‘included’ (non-key) columns is significant. It isn’t!

2.4

Not choosing the most
suitable clustered index
for a table
You can only have one clustered index on a table, of
course, and this choice has a lot of influence on the
performance of queries, so you should take care to
select wisely. Are you likely to select predominately
single values, unsorted or sorted ranges? Are you
predominately using one particular index other than
your primary key? Is the table experiencing many more
reads than writes, with queries that make reference to
columns that aren’t part of the primary key? Are you
typically selecting ranges within a particular category?
Are your WHERE clauses returning many rows? These
ways that the table participates in frequently-used
queries are likely to be better accommodated by a
clustered index.

2.5

12

Not explicitly declaring which
index is the clustered one
The primary key is the usual, but not the only, correct choice to
be the clustered index. It is seldom wrong to assign a clustered
index to a primary key. It is just a problem if your choice of
primary key is a ‘fat key’ without natural order that doesn’t work
well as a clustered index, or if there is a much better use in the
table for that clustered index, such as supporting range scans or
avoiding sorts on a frequently-queried candidate key.

A Clustered index shouldn’t necessarily be frittered away on
a surrogate primary key, based on some meaningless ever-
increasing integer. Do not be afraid to use the clustered index for
another key if it fits better with the way you query the data, and
specifically how the table participates in frequently-used queries.
You can only have one clustered index on a table, of course, and
this choice has a lot of influence on the performance of queries,
so you should take care to select wisely. The primary key is the
usual, but not the only, correct choice.

For your clustered index, you are likely to choose a ‘narrow’ index
which is stored economically because this value has to be held in
every index leaf-level pointer. This can be an interesting tradeoff
because the clustered index key is automatically included in
all non-clustered indexes as the row locator so non-clustered
indexes will cover queries that need only the non-clustered index
key and the clustered index key.

BP001 Index type is not specified

2.6

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp001

13

Misusing NULL values
The three-value logic required to handle NULL values can cause a
problems in reporting, computed values and joins. A NULL value
means ‘unknown’, so any sort of mathematics or concatenation
will result in an unknown (NULL) value. Table columns should
be nullable only when they really need to be. Although it can
be useful to signify that the value of a column is unknown or
irrelevant for a particular row, NULLs should be permitted only
when they’re legitimate for the data and application, and fenced
around to avoid subsequent problems.

2.7

Using temporary tables for very
small result sets
Temporary tables can lead to recompiles, which can be
costly. Table variables, while not so useful for larger data sets
(approximately 150 rows or more), avoid recompiles and are
therefore preferred in smaller data sets.

ST011/ST012 Consider using table variable instead of
temporary table/Consider using temporary table instead of
table variable

2.8

14

Creating a table without specifying
a schema
If you’re creating tables from a script, they must, like views and
routines, always be defined with two-part names. It is possible for
different schemas to contain the same table name, and there are
some perfectly legitimate reasons for doing this. Don’t rely on
dbo being the default schema for the login that executes the
create script: The default can be changed.

The user of any database is defaulted to the ‘dbo’ schema, unless
explicitly assigned to a different schema. Unless objects are
referenced by schema as well as name, they are assumed by the
database engine to be in the user’s default schema, and if not
there, in the dbo schema.

2.9

Most tables should have a
clustered index
SQL Server storage is built around the clustered index as a
fundamental part of the data storage and retrieval engine. The
data itself is stored with the clustered key. All this makes having
an appropriate clustered index a vital part of database design.
The places where a table without a clustered index is preferable
are rare; which is why a missing clustered index is a common
code smell in database design.

2.10

15

Using the same column name in
different tables but with different
data types
Any programmer will assume a sane database design in which
columns with the same name in different tables have the same
data type. As a result, they probably won’t verify types. Different
types is an accident waiting to happen.

2.11

A ‘table’ without a clustered index is actually a heap, which is
a particularly bad idea when its data is usually returned in an
aggregated form, or in a sorted order. Paradoxically, though, it
can be rather good for implementing a log or a ‘staging’ table
used for bulk inserts, since it is read very infrequently, and there
is less overhead in writing to it. A table with a non-clustered
index , but without a clustered index can sometimes perform well
even though the index has to reference individual rows via a Row
Identifier rather than a more meaningful clustered index. The
arrangement can be effective for a table that isn’t often updated
if the table is always accessed by a non-clustered index and there
is no good candidate for a clustered index.

16

Creating dated copies of the same
table to manage table sizes
Now that SQL Server supports table partitioning, it is far better to
use partitions than to create dated tables, such as Invoices2012,
Invoices2013, etc. If old data is no longer used, archive the data,
store only aggregations, or both.

Trying to add a NOT NULL column
without default value to a table
with data
Adding a NOT NULL column without a DEFAULT value to an
existing table with data in it will fail because SQL Server has no
way of adding that column to existing rows, because there must
be a value in the column.

EI028 Adding NOT NULL column without default value

2.13

2.14

Defining a table column without
explicitly specifying whether it is
nullable
In a CREATE TABLE DDL script, a column definition that has
not specified that a column is NULL or NOT NULL is a risk. The
default nullability for a database’s columns can be altered by the
‘ANSI_NULL_DFLT_ON’ setting. Therefore one cannot assume
whether a column will default to NULL or NOT NULL. It is safest
to specify it in the column definition for noncomputed columns,
and it is essential if you need any portability of your table design.
Sparse columns must always allow NULL.

[NOT] NULL option is not specified in CREATE/DECLARE TABLE
statement (registered once per table)

2.12

https://documentation.red-gate.com/codeanalysis/execution-rules/ei028
https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp014

17

Problems with Data
Types

3

Using VARCHAR(1),
VARCHAR(2), etc.
Columns of a short or fixed length should have a fixed size
because variable-length types have a disproportionate storage
overhead. For a large table, this could be significant. The narrow
a table, the faster it can be accessed. In addition, columns of
variable length are stored after all columns of fixed length, which
can have performance implications. For short strings, use a fixed
length type, such as CHAR, NCHAR, and BINARY.

BP009 Avoid var types of length 1 or 2

SR0009: Avoid using types of variable length that are size 1 or 2

3.1

Declaring var type variables
without length
An VARCHAR, VARBINARY or NVARCHAR that is declared without
an explicit length is shorthand for specifying a length of 1. Is this
what you meant or did you do it by accident? Much better and
safer to be explicit.

3.2

https://msdn.microsoft.com/en-us/library/dd193263(v=vs.100).aspx

18

Using deprecated language
elements such as the TEXT/NTEXT
data types
There is no good reason to use TEXT or NTEXT. They were a first,
flawed attempt at BLOB storage and are there only for backward
compatibility. Likewise, the WRITETEXT, UPDATETEXT and
READTEXT statements are also deprecated. All this complexity
has been replaced by the VARCHAR(MAX) and NVARCHAR(MAX)
data types, which work with all of SQL Server’s string functions.

DEP002 WRITETEXT,UPDATETEXT and READTEXT statements
are deprecated

3.3

Using MONEY data type
The MONEY data type confuses the storage of data values with
their display, though it clearly suggests, by its name, the sort of
data held. Using the DECIMAL data type is almost always better.

3.4

Using FLOAT or REAL data types
The FLOAT (8 byte) and REAL (4 byte) data types are suitable
only for specialist scientific use since they are approximate types
with an enormous range (-1.79E+308 to -2.23E-308, 0 and 2.23E-
308 to 1.79E+308, in the case of FLOAT). Any other use needs to
be regarded as suspect, and a FLOAT or REAL used as a key or
found in an index needs to be investigated. The DECIMAL type is
an exact data type and has an impressive range from -10^38+1
through 10^38-1. Although it requires more storage than the
FLOAT or REAL types, it is generally a better choice.

3.5

https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep002
https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep002

19

Mixing parameter data types in a
COALESCE expression
The result of the COALESCE expression (which is shorthand for
a CASE statement) is the first non-NULL expression in the list of
expressions provided as arguments. Mixing data types can result in
errors or data truncation.

3.6

Using DATETIME or DATETIME2
when you’re concerned only with
the date
Even with data storage being so cheap, a saving in a data type
adds up and makes comparison and calculation easier. When
appropriate, use the DATE or SMALLDATETIME type. Narrow tables
perform better and use less resources.

3.7

Using DATETIME or DATETIME2
when you’re merely recording the
time of day
Being parsimonious with memory is important for large tables, not
only to save space but also to reduce I/O activity during access.
When appropriate, use the TIME or SMALLDATETIME type. Queries
too are generally simpler on the appropriate data type.

3.8

Using sql_variant inappropriately
The sql_variant type is not your typical data type. It stores values
from a number of different data types and is used internally by SQL
Server. It is hard to imagine a valid use in a relational database.
It cannot be returned to an application via ODBC except as binary
data, and it isn’t supported in Microsoft Azure SQL Database.

3.9

20

The length of the VARCHAR,
VARBINARY and NVARCHAR
datatype in a CAST or CONVERT
clause wasn’t explicitly specified
When you convert a datatype to a varchar, you do not have
to specify the length. If you don’t do so, SQL Server will use a
Varchar length sufficient to hold the string. It is better to specify
the length because SQL Server has no idea what length you may
subsequently need.

BP008 CAST/CONVERT to var types without length

3.10

Storing a duration rather than a
point in time
This takes some programmers by surprise. Although it is possible
to store a time interval in a table it is not generally a good idea. A
time interval is the difference between the start and end of a
period of time. You may want to measure this in all sorts of ways,
(milliseconds? Quarters? weeks?) and you may subsequently
need to deal with all sorts of queries that have to work out what
the status was at a particular time (e.g. how many rooms were
booked at a particular point in time). By storing the time period
as the start and end date-and-time, you leave your options open.
If you store the time interval (in what? Seconds?) and maybe the
start DateTime, you make subsequent queries more difficult.
It is possible to use a TIME data type if the duration is less
than 24 hours, but this is not what the type is intended for, and
can be the cause of confusion for the next person who has to
maintain your code. They will display very oddly depending on the
representation of the time-ofday you use and wrap around every
24 hours!

3.11

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp008

21

Using VARCHAR(MAX) or
NVARCHAR(MAX) when it isn’t
necessary
VARCHAR types that specify a number rather than MAX have a
finite maximum length and can be stored in-page, whereas MAX
types are treated as BLOBS and stored off-page, preventing online
reindexing. Use MAX only when you need more than 8000 bytes
(4000 characters for NVARCHAR, 8000 characters for VARCHAR).

3.12

Using VARCHAR rather than
NVARCHAR for anything that
requires internationalisation, such
as names or addresses
You can’t require everyone to stop using national characters or
accents any more. The nineteenfifties are long gone. Names are
likely to have accents in them if spelled properly, and international
addresses and language strings will almost certainly have accents
and national characters that can’t be represented by 8-bit ASCII!

3.13

Declaring VARCHAR, VARBINARY
and NVARCHAR datatypes without
explicit length
An NVARCHAR that is declared without an explicit length is
shorthand for specifying a length of 1. Is this what you meant or
did you do it by accident? Much better to be explicit.

BP007 Declaring var type variables without length

3.14

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp007

22

Problems with
expressions

4

Excessive use of parentheses
Some developers use parentheses even when they aren’t
necessary, as a safety net when they’re not sure of precedence.
This makes the code more difficult to maintain and understand.

4.1

Using functions such as
‘ISNUMERIC’ without additional
checks
Some functions, such as ISNUMERIC, are there to tell you in very
general terms whether a string can be converted to a number
without an error. Sadly, it doesn’t tell you what kind of number. (Try
SELECT isNumeric(‘,’); or SELECT ISNUMERIC(‘4D177’);
for example.) This causes immense confusion. The ISNUMERIC
function returns 1 when the input expression evaluates to a valid
numeric data type; otherwise it returns 0. The function also returns
1 for some characters that are not numbers, such as plus (+),
minus (-), and valid currency symbols such as the dollar sign ($).
This is legitimate because these can be converted to numbers, but
counter-intuitive. Unfortunately, most programmers want to know
whether a number is a valid quantity of money, or a float, or integer.
Use a function such as TRY_CAST() and TRY_CONVERT() that
is appropriate for the data type whose validity you are testing.
E.g. select try_convert(int,’12,345’) or select try_
convert(float,’5D105’)

EI029 Avoid using ISNUMERIC() function

4.2

https://documentation.red-gate.com/codeanalysis/execution-rules/ei029

23

Injudicious use of the LTRIM and
RTRIM functions
These don’t work as they do in any other computer language. They
only trim ASCII space rather than any whitespace character. Use a
scalar user-defined function instead.

4.3

Using DATALENGTH rather than
LEN to find the length of a string
Although using the DATALENGTH function is valid, it can easily give
you the wrong results if you’re unaware of the way it works with the
CHAR, NCHAR, or NVARCHAR data types.

4.4

Not using a semicolon to terminate
SQL statements
Although the lack of semicolons is completely forgivable, it helps
to understand more complicated code if individual statements are
terminated. With one or two exceptions, such as delimiting the
previous statement from a CTE, using semicolons is currently only
a decoration, though it is a good habit to adopt to make code more
future-proof and portable. When developing code, it is usual add
clauses on the end of statements, and in these circumstances,
semicolons can be a considerable irritation because they trigger
etrrors when they become embedded.

4.5

24

Relying on data being implicitly
converted between types
Implicit conversions can have unexpected results, such as
truncating data or reducing performance. It is not always clear in
expressions how differences in data types are going to be
resolved. If data is implicitly converted in a join operation, the
database engine is more likely to build a poor execution plan. More
often then not, you should explicitly define your conversions to
avoid unintentional consequences.

See: SR0014: Data loss might occur when casting from {Type1} to
{Type2}

4.6

Using the @@IDENTITY system
function
The generation of an IDENTITY value is not transactional, so in
some circumstances, @@IDENTITY returns the wrong value and
not the value from the row you just inserted. This is especially true
when using triggers that insert data, depending on when the
triggers fire. The SCOPE_IDENTITY function is safer because it
always relates to the current batch (within the same scope). Also
consider using the IDENT_CURRENT function, which returns the
last IDENTITY value regardless of session or scope. The OUTPUT
clause is a better and safer way of capturing identity values.

Usage of @@identity

4.7

http://msdn.microsoft.com/en-us/library/dd193269(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193269(v=vs.100).aspx
https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp010

25

Using BETWEEN for DATETIME
ranges
You never get complete accuracy if you specify dates when using
the BETWEEN logical operator with DATETIME values, due to the
inclusion of both the date and time values in the range. It is
better to first use a date function such as DATEPART to convert
the DATETIME value into the necessary granularity (such as day,
month, year, day of year) and store this in a column (or columns),
then indexed and used as a filtering or grouping value. This can be
done by using a persisted computed column to store the required
date part as an integer, or via a trigger.

4.8

Using SELECT * in a batch
Although there is a legitimate use in a batch for IF EXISTS (SELECT
* FROM …) or SELECT count(*), any other use is vulnerable to
changes in column names or order. SELECT * was designed for
interactive use, not as part of a batch. It assumes certain columns
in a particular order, which may not last. Also, results should
always consist of just the columns you need. Plus, requesting more
columns from the database than are used by the application
results in excess database I/O and network traffic, leading to slow
application response and unhappy users.

Asterisk in select list

4.9

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp005

26

INSERT without column list
The INSERT statement need not have a column list, but omitting
it assumes certain columns in a particular order. It likely to cause
errors if the table in to which the inserts will be made is changed,
particularly with table variables where insertions are not checked.
Column lists also make code more intelligible.

See: SR0001: Avoid SELECT * in a batch, stored procedures, views,
and table-valued functions

4.10

ORDER BY clause with constants
The use of constants in the ORDER BY is deprecated for removal
in the future. They make ORDER BY statements more difficult to
understand.

BP002 ORDER BY clause with constants

4.11

http://msdn.microsoft.com/en-us/library/dd193296(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193296(v=vs.100).aspx
https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp002

27

Difficulties with
Query Syntax

5

Creating UberQueries (God-like
Queries)
Always avoid overweight queries (e.g., a single query with four
inner joins, eight left joins, four derived tables, ten subqueries, eight
clustered GUIDs, two UDFs and six case statements).

5.1

Nesting views as if they were
Russian dolls
Views are important for abstracting the base tables. However,
they do not lend themselves to being deeply nested. Views that
reference views that reference views that reference views perform
poorly and are difficult to maintain. Recommendations vary but I
suggest that views relate directly to base tables where possible.

5.2

Joins between large views
Views are like tables in their behaviour, but they can’t be indexed
to support joins. When large views participate in joins, you never
get good performance. Instead, either create a view that joins the
appropriately indexed base tables, or create indexed temporary
tables to contain the filtered rows from the views you wish to ‘join’.

5.3

28

Using the old Sybase JOIN syntax
The deprecated syntax (which includes defining the join condition
in the WHERE clause) is not standard SQL and is more difficult to
inspect and maintain. Parts of this syntax are completely
unsupported in SQL Server 2012 or higher.

The “old style” Microsoft/Sybase JOIN style for SQL, which uses
the =* and *= syntax, has been deprecated and is no longer used.
Queries that use this syntax will fail when the database engine
level is 10 (SQL Server 2008) or later (compatibility level 100).
The ANSI-89 table citation list (FROM tableA, tableB) is still ISO
standard for INNER JOINs only. Neither of these styles are worth
using. It is always better to specify the type of join you require,
INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER and CROSS,
which has been standard since ANSI SQL-92 was published. While
you can choose any supported JOIN style, without affecting the
query plan used by SQL Server, using the ANSI-standard syntax
will make your code easier to understand, more consistent, and
portable to other relational database systems.

See: old-style join syntax

DEP017 NON-ANSI join (== or =) is used

ST001 Old-style join is used (…from table1,table2…)

5.4

https://www.red-gate.com/hub/product-learning/sql-prompt/finding-code-smells-using-sql-prompt-old-style-join-syntax-st001
https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep017
https://documentation.red-gate.com/codeanalysis/style-rules/st001

29

Using correlated subqueries
instead of a join
Correlated subqueries, queries that run against each returned
by the main query, sometimes seem an intuitive approach, but
they are merely disguised cursors needed only in exceptional
circumstances. Window functions will usually perform the same
operations much faster. Most usages of correlated subqueries are
accidental and can be replaced with a much simpler and faster
JOIN query.

5.5

Using SELECT rather than SET to
assign values to variables
Using a SELECT statement to assign variable values is not ANSI
standard SQL and can result in unexpected results. If you try to
assign the result from a single query to a scalar variable, and the
query produces several rows, a SELECT statement will return no
errors, whereas a SET statement will. On the other hand, if the
query returns no rows, the SET statement will assign a NULL to the
variable, whereas SELECT will leave the current value of the
variable intact.

5.6

Using scalar user-defined functions
(UDFs) for data lookups as a poor
man’s join
It is true that SQL Server provides a number of system functions
to simplify joins when accessing metadata, but these are heavily
optimised. Using user-defined functions in the same way will lead
to very slow queries since they perform much like correlated
subqueries.

5.7

30

Not using two-part object names
for object references
The compiler can interpret a two-part object name quicker than just
one name. This applies particularly to tables, views, procedures
and functions. The same name can be used in different schemas,
so it pays to make your queries unambiguous.

The complete name of any schema-based database object
consists of up to four identifiers: the server name, database name,
schema name, and object name. Only if you are calling a remote
stored procedure would you need a fully qualified name consisting
of all four identifiers. If you are calling a procedure in another
database, you obviously need its database identifier in the name.
Within a database, you only need the object name itself so long as
the procedure is in the same schema. By specifying the schema,
the database engine needs less searching to identify it. Even
system stored procedures should be qualified with the ‘sys’ schema
name. When creating a stored procedure as well, it is a good habit
to always specify the parent schema.

It is a very good idea to get into the habit of qualifying the names of
procedures with their schema. It is not only makes your code more
resilient and maintainable, but as Microsoft introduces new
features that use schemas, such as auditing mechanisms, you
code contains no ambiguities that could cause problems.

See: procedures that lack schema-qualification

PE001/PE002 Schema name for procedure is not specified/
Schema name for table or view is not specified

5.8

https://www.red-gate.com/hub/product-learning/sql-prompt/finding-code-smells-using-sql-prompt-procedures-lack-schema-qualification
https://documentation.red-gate.com/codeanalysis/performance-rules/pe001
https://documentation.red-gate.com/codeanalysis/performance-rules/pe001

31

Using INSERT INTO without
specifying the columns and their
order
Not specifying column names is fine for interactive work, but if you
write code that relies on the hope that nothing will ever change,
then refactoring could prove to be impossible. It is much better
to trigger an error now than to risk corrupted results after the SQL
code has changed. Column lists also make code more intelligible.

BP004 INSERT without column list

5.9

Using full outer joins unnecessarily
It is rare to require both matched and unmatched rows from the
two joined tables, especially if you filter out the unmatched rows in
the WHERE clause. If what you really need is an inner join, left
outer join or right outer join, then use one of those. If you want all
rows from both tables, use a cross join.

5.10

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp004

32

Including complex conditionals in
the WHERE clause
It is tempting to produce queries in routines that have complex
conditionals in the WHERE clause where variables are used for
filtering rows. Usually this is done so that a range of filtering
conditions can be passed as parameters to a stored procedure or
tale-valued function. If a variable is set to NULL instead of a search
term, the OR logic or a COALESCE disables the condition. If this is
used in a routine, very different queries are performed according
to the combination of parameters used or set to null. As a result,
the query optimizer must use table scans, and you end up with
slowrunning queries that are hard to understand or refactor. This is
a variety of UberQuery which is usually found when some complex
processing is required to achieve the final result from the filtered
rows.

5.11

Mixing data types in joins or
WHERE clauses
If you compare or join columns that have different data types, you
rely on implicit conversions, which result in a poor execution plans
that use table scans. This approach can also lead to errors
because no constraints are in place to ensure the data is the
correct type.

5.12

33

Assuming that SELECT statements
all have roughly the same execution
time
Few programmers admit to this superstition, but it is apparent
by the strong preference for hugely long SELECT statements
(sometimes called UberQueries). A simple SELECT statement runs
in just a few milliseconds. A process runs faster if the individual
SQL queries are clear enough to be easily processed by the query
optimizer. Otherwise, you will get a poor query plan that performs
slowly and won’t scale.

5.13

Not handling NULL values in
nullable columns
Generally, it is wise to explicitly handle NULLs in nullable columns,
by using COALESCE to provide a default value. This is especially
true when calculating or concatenating the results. (A NULL in
part of a concatenated string, for example, will propagate to the
entire string. Names and addresses are prone to this sort of error.)

SR0007: Use ISNULL(column, default_value) on nullable columns
in expressions

5.14

http://msdn.microsoft.com/en-us/library/dd193267(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193267(v=vs.100).aspx

34

Referencing an unindexed column
within the IN predicate of a WHERE
clause
A WHERE clause that references an unindexed column in the IN
predicate causes a table scan and is therefore likely to run far more
slowly than necessary.

See: SR0004: Avoid using columns that do not have indexes as
test expressions in IN predicates

5.15

Using LIKE in a WHERE clause with
an initial wildcard character
An index cannot be used to find matches that start with a wildcard
character (‘%’ or ‘_’), so queries are unlikely to run well on large
tables because they’ll require table scans.

See: SR0005: Avoid using patterns that start with a ‘%’ in LIKE
predicates

5.16

Using a predicate or join column
as a parameter for a user-defined
function
The query optimizer will not be able to generate a reasonable query
plan if the columns in a predicate or join are included as function
parameters. The optimizer needs to be able to make a reasonable
estimate of the number of rows in an operation in order to
effectively run a SQL statement and cannot do so when functions
are used on predicate or join columns.

5.17

http://msdn.microsoft.com/en-us/library/dd193249(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193249(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193273(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193273(v=vs.100).aspx

35

Supplying object names without
specifying the schema
Object names need only to be unique within a schema. However,
when referencing an object in a SELECT, UPDATE, DELETE, MERGE
or EXECUTE statements or when calling the OBJECT_ID function,
the database engine can find the objects more easily found if the
names are qualified with the schema name.

PE001/PE002 Schema name for procedure is not specified/
Schema name for table or view is not specified

5.18

Using ‘== NULL’ or ‘<> NULL’ to filter
a nullable column for NULLs
An expression that returns a NULL as either the left value (Lvalue)
or right value (Rvalue) will always evaluate to NULL. Use IS NULL or
IS NOT NULL.

BP011 NULL comparison or addition/substring

5.19

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp011

36

Not using NOCOUNT ON in stored
procedures and triggers
Unless you need to return messages that give you the row count
of each statement, you should specify the NOCOUNT ON option to
explicitly turn off this feature. This option is not likely to be a
significant performance factor one way or the other. Whenever
you execute a query, a short message is returned to the client with
the number of rows that are affected by that T-SQL statement.
When you use SET NOCOUNT ON, this message is not sent. This
can improve performance by reducing network traffic slightly. It is
best to use SET NOCOUNT ON in SQL Server triggers and stored
procedures, unless one or more of the applications using the
stored procedures require it to be OFF, because they are reading the
value in the message.

The best approach, generally, is to prevent rowcount messages
being sent, unless they are required, but the tricky part is
accommodating legacy applications that use, and often misuse,
these messages. Additionally, sending these messages can
sometimes be a problem for asynchronous processing of
procedures by intermediate layers of database applications
such as ORMs. The rowcount messages are much slower to be
transmitted to the client than the result of the stored procedure,
and this can block threads.

See the SET NOCOUNT problem

PE009 No SET NOCOUNT ON before DML

5.20

https://www.red-gate.com/hub/product-learning/sql-prompt/finding-code-smells-using-sql-prompt-set-nocount-problem-pe008-pe009

37

Using the NOT IN predicate in the
WHERE clause
You’re queries will often perform poorly if your WHERE clause
includes a NOT IN predicate that references a subquery. The
optimizer will likely have to use a table scan instead of an index
seek, even if there is a suitable index. You can almost always get a
better-performing query by using a left outer join and checking for a
NULL in a suitable NOT NULLable column on the right-hand side.

5.21

Defining foreign keys without a
supporting index
Unlike some relational database management systems (RDBMSs),
SQL Server does not automatically index a foreign key column, even
though an index will likely be needed. It is left to the implementers
of the RDBMS as to whether an index is automatically created to
support a foreign key constraint. SQL Server chooses not to do
so, probably because, if the referenced table is a lookup table with
just a few values, an index isn’t useful. SQL Server also does not
mandate a NOT NULL constraint on the foreign key, perhaps to
allow rows that aren’t related to the referenced table.

Even if you’re not joining the two tables via the primary and foreign
keys, with a table of any size, an index is usually necessary to
check changes to PRIMARY KEY constraints against referencing
FOREIGN KEY constraints in other tables to verify that changes to
the primary key are reflected in the foreign key

5.22

38

Using a non-SARGable (Search
ARGument..able) expression in a
WHERE clause
In the WHERE clause of a query it is good to avoid having a column
reference or variable embedded within an expression, or used as
a parameter of a function. A column reference or variable is best
used as a single element on one side of the comparison operator,
otherwise it will most probably trigger a table scan, which is
expensive in a table of any size.

See: SR0006: Move a column reference to one side of a
comparison operator to use a column index

5.23

Including a deterministic function
in a WHERE clause
If the value of the function does not depend on the data row that
you wish to select, then it is better to put its value in a variable
before the SELECT query and use the variable instead.

See: SR0015: Extract deterministic function calls from WHERE
predicates PE017 Incorrect usage of const UDF

5.24

http://msdn.microsoft.com/en-us/library/dd193264(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193264(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193285(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd193285(v=vs.100).aspx

39

Using an unverified scalar user-
defined function as a constant.
The incorrect use of a non-schema bound scalar UDF, as a global
database constant, is a major performance problem and must be
winkled out of any production code. The problem arises because
SQL Server doesn’t trust non-schema verified scalar functions as
being precise and deterministic, and so chooses the safest, though
slowest, option when executing them. It’s a slightly insidious
problem because it doesn’t really show its full significance in the
execution plan, though an Extended Events session will reveal what
is really going on.

See: Misuse of the scalar user-defined function as a constant
(PE017)

PE017 Incorrect usage of const UDF

5.25

Using SELECT DISTINCT to mask a
join problem
It is tempting to use SELECT DISTINCT to eliminate duplicate rows
in a join. However, it’s much better to determine why rows are being
duplicated and fix the problem.

5.26

https://www.red-gate.com/hub/product-learning/sql-prompt/misuse-scalar-user-defined-function-constant-pe017
https://www.red-gate.com/hub/product-learning/sql-prompt/misuse-scalar-user-defined-function-constant-pe017
https://documentation.red-gate.com/codeanalysis/performance-rules/pe017

40

Using NOT IN with an expression
that allows null values
If you are using a NOT IN predicate to select only those rows that
match the results returned by a subquery or expression, make sure
there are no NULL values in those results. Otherwise, your outer
query won’t return the results you expect. In the case of both IN and
NOT IN, it is better to use an appropriate outer join.

PE019 Consider using NOT EXISTS instead of NOT IN (subquery)

See Consider using NOT EXISTS instead of NOT IN (subquery)

5.27

A DELETE statement has omitted
that WHERE clause, which would
delete the whole table
It is very easy to delete an entire table when you mean to delete just
one or more rows. There are occasionally good reasons for using
DELETE to clear a table entirely. If you need to clear a table that
is involved in replication or log shipping, or a table that has foreign
key constraints that reference it, you have no choice. Otherwise,
it is more usual to use the TRUNCATE TABLE statement that
quickly deletes all records in a table by deallocating the data pages
used by the table. The DELETE statement logs the deletions, and
establishes locks whereas the TRUNCATE statement only uses the
transaction log to record the page deallocation. It also resets
the IDENTITY back to the SEED, and the deallocated pages are
recycled.

BP017 DELETE statement without WHERE clause

5.28

https://documentation.red-gate.com/codeanalysis/performance-rules/pe019
https://www.red-gate.com/hub/product-learning/sql-prompt/consider-using-not-exists-instead-not-subquery
https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp017

41

An UPDATE statement has omitted
the WHERE clause, which would
update every row in the table
It is very easy to update an entire table, over-writing the data in it,
when you mean to update just one or more rows. At the console,
Delete or Update statements should also be in a transaction so
you can check the result before committing.

BP018 UPDATE statement without WHERE clause

5.29

Using a Common Table Expression
(CTE) unnecessarily
CTEs are there to make SQL Statements clearer. They specify
a temporary named result set, derived from a simple query and
defined within the execution scope of a single SELECT, INSERT,
UPDATE, or DELETE statement. They are convenient to use when
an intermediate temporary result needs to be used more than
once as a table-source within an expression. It is also useful
for recursive statements because a common table expression
can include references to itself. However, when neither of these
rather rare requirements exist, a CTE becomes unnecessary and
does nothing but provide extra overhead. It will slow down the
performance.

5.30

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp018

42

Problems with
naming

6

Excessively long or short identifiers
Identifiers should help to make SQL readable as if it were English.
Short names like t1 or gh might make typing easier but can cause
errors and don’t help teamwork. At the same time, names should
be names and not long explanations. Remember that these are
names, not documentation. Long names can be frustrating to the
person using SQL interactively, unless that person is using SQL
Prompt or some other IntelliSense system, through you can’t rely
on it.

6.1

Using sp_ prefixes for stored
procedures
The sp_ prefix has a special meaning in SQL Server and doesn’t
mean ‘stored procedure’ but ‘special’, which tells the database
engine to first search the master database for the object.

EI024 Stored procedure name starts with sp_

6.2

‘Tibbling’ SQL Server objects with
Reverse-Hungarian prefixes such
as tbl_, vw_, pk_, fn_, and usp_
SQL names don’t need prefixes because there isn’t any ambiguity
about what they refer to. ‘Tibbling’ is a habit that came from
databases imported from Microsoft Access.

6.3

https://documentation.red-gate.com/codeanalysis/execution-rules/ei024

43

Using reserved words in names
Using reserved words makes code more difficult to read, can cause
problems to code formatters, and can cause errors when writing
code.

SR0012: Avoid using reserved words for type names

6.4

Including special characters in
object names
SQL Server supports special character in object names for
backward compatibility with older databases such as Microsoft
Access, but using these characters in newly created databases
causes more problems than they’re worth. Special characters
requires brackets (or double quotations) around the object name,
makes code difficult to read, and makes the object more difficult to
reference. Avoid particularly using any whitespace characters,
square brackets or either double or single quotation marks as part
of the object name.

R0011: Avoid using special characters in object names

6.5

Using numbers in table names
It should always serve as a warning to see tables named Year1,
Year2, Year3 or so on, or even worse, automatically generated
names such as tbl3546 or 567Accounts. If the name of the table
doesn’t describe the entity, there is a design problem.

See: SR0011: Avoid using special characters in object names

6.6

http://msdn.microsoft.com/en-us/library/dd193421(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd172134(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd172134(v=vs.100).aspx

44

Using square brackets
unnecessarily for object names
If object names are valid and not reserved words, there is no need
to use square brackets. Using invalid characters in object names
is a code smell anyway, so there is little point in using them. If you
can’t avoid brackets, use them only for invalid names.

SR0011: Avoid using special characters in object names

6.7

Using system-generated object
names, particularly for constraints
This tends to happen with primary keys and foreign keys if, in the
data definition language (DDL), you don’t supply the constraint
name. Auto-generated names are difficult to type and easily
confused, and they tend to confuse SQL comparison tools. When
installing SharePoint via the GUI, the database names get GUID
suffixes, making them very difficult to deal with.

6.8

http://msdn.microsoft.com/en-us/library/dd172134(v=vs.100).aspx

45

Problems with
routines

7

Including few or no comments
Being antisocial is no excuse. Either is being in a hurry. Your scripts
should be filled with relevant comments, 30% at a minimum. This is
not just to help your colleagues, but also to help you-in-thefuture.
What seems obvious today will be as clear as mud tomorrow,
unless you comment your code properly. In a routine, comments
should include intro text in the header as well as examples of
usage.

7.1

You have a stored procedure that
does not return a result code
When you use the EXECUTE command to execute a stored
procedure, or call the stored procedure from an application, an
integer is returned that can be assigned to a variable. It is generally
used to communicate the success of the operation. It provides a
very useful way of reacting to problems in a process and can make
a batch process far less convoluted.

BP016 Return without result code

7.2

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp016

46

Excessively ‘overloading’ routines
Stored procedures and functions are compiled with query plans.
If your routine includes multiple queries and you use a parameter
to determine which query to run, the query optimizer cannot come
up with an efficient execution plan. Instead, break the code into a
series of procedures with one ‘wrapper’ procedure that determines
which of the others to run.

7.3

Creating routines (especially stored
procedures) as ‘God Routines’ or
‘UberProcs’
Occasionally, long routines provide the most efficient way to
execute a process, but occasionally they just grow like algae as
functionality is added. They are difficult to maintain and likely to be
slow. Beware particularly of those with several exit points and
different types of result set.

7.4

Creating stored procedures that
return more than one result set
Although applications can use stored procedures that return
multiple result sets, the results cannot be accessed within SQL.
Although they can be used by the application via ODBC, the order of
tables will be significant and changing the order of the result sets
in a refactoring will then break the application in ways that may not
even cause an error, and will be difficult to test automatically from
within SQL.

7.5

47

Creating a Multi-statement table-
valued function, or a scalar
function when an inline function is
possible
Inline table-valued Functions run much quicker than a Multi-
statement table-valued function, and are also quicker than scalar
functions. Obviously, they are only possible where a process can be
resolved into a single query.

7.6

Too many parameters in stored
procedures or functions
The general consensus is that a lot of parameters can make a
routine unwieldy and prone to errors. You can use table-valued
parameters (TVPs) or XML parameters when it is essential to pass
data structures or lists into a routine.

7.7

Duplicated code
This is a generic code smell. If you discover an error in code that
has been duplicated, the error needs to be fixed in several places.
Although duplication of code In SQL is often a code smell, it is
not necessarily so. Duplication is sometimes done intentionally
where large result sets are involved because generic routines
frequently don’t perform well. Sometimes quite similar queries
require very different execution plans. There is often a trade-
off between structure and performance, but sometimes the
performance issue is exaggerated. Although you can get a
performance hit from using functions and procedures to prevent
duplication by encapsulating functionality, it isn’t often enough to
warrant deliberate duplication of code.

7.8

48

High cyclomatic complexity
Sometimes it is important to have long procedures, maybe with
many code routes. However, if a high proportion of your procedures
or functions are excessively complex, you’ll likely have trouble
identifying the atomic processes within your application. A high
average cyclomatic complexity in routines is a good sign of
technical debt.

7.9

Using an ORDER BY clause within a
view
You cannot use the ORDER BY clause without the TOP clause or
the OFFSET … FETCH clause in views (or inline functions, derived
tables, or subqueries). Even if you resort to using the TOP 100%
trick, the resulting order isn’t guaranteed. Specify the ORDER BY
clause in the query that calls the view.

EI030 Order by in view or single-statement TVF

7.10

Unnecessarily using stored
procedures or multiline table-
valued functions where a view is
sufficient
Stored procedures are not designed for delivering result sets. You
can use stored procedures as such with INSERT … EXEC, but you
can’t nest INSERT … EXEC so you’ll soon run into problems. If
you do not need to provide input parameters, then use views,
otherwise use inline table valued functions.

7.11

https://documentation.red-gate.com/codeanalysis/execution-rules/ei030

49

Using Cursors
SQL Server originally supported cursors to more easily port dBase
II applications to SQL Server, but even then, you can sometimes use
a WHILE loop as an effective substitute. However, modern versions
of SQL Server provide window functions and the CROSS/OUTER
APPLY syntax to cope with most of the traditional valid uses of the
cursor.

7.12

You have not explicitly defined the
scope of a cursor
When you define a cursor with the DECLARE CURSOR statement
you can, and should, define the scope of the cursor name. GLOBAL
means that the cursor name should be global to the connection.
LOCAL specifies that the cursor name is LOCAL to the stored
procedure, trigger, or batch containing the DECLARE CURSOR
statement.

BP015 Scope of cursor (LOCAL/GLOBAL) is not specified

7.13

Overusing CLR routines
There are many valid uses of CLR routines, but they are often
suggested as a way to pass data between stored procedures or to
get rid of performance problems. Because of the maintenance
overhead, added complexity, and deployment issues associated
with CLR routines, it is best to use them only after all SQL-based
solutions to a problem have been found wanting or when you
cannot use SQL to complete a task.

7.14

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp015
https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp015

50

Excessive use of the WHILE loop
A WHILE loop is really a type of cursor. Although a WHILE loop can
be useful for several inherently procedural tasks, you can usually
find a better relational way of achieving the same results. The
database engine is heavily optimised to perform set-based
operations rapidly. Don’t fight it!

7.15

Relying on the INSERT … EXEC
statement
In a stored procedure, you must use an INSERT … EXEC statement
to retrieve data via another stored procedure and insert it into the
table targeted by the first procedure. However, you cannot nest this
type of statement. In addition, if the referenced stored procedure
changes, it can case the first procedure to generate an error.

7.16

Executing stored procedure without
getting result
If a stored procedure provides one or more result, the rows will
be sent to the client. For large result sets the stored procedure
execution will not continue to the next statement until the result
set has been completely sent to the client. For small result sets
the results will be spooled for return to the client and execution will
continue. Within a batch, a stored procedure that returns a result
should be called with INSERT …EXECUTE syntax.

EI025 Executing stored procedure without getting result

7.17

https://documentation.red-gate.com/codeanalysis/execution-rules/ei025

51

Forgetting to set an output variable
The values of the output parameters must be explicitly set in all
code paths, otherwise the value of the output variable will be NULL.
This can result in the accidental propagation of NULL values. Good
defensive coding requires that you initialize the output parameters
to a default value at the start of the procedure body.

See SR0013: Output parameter (parameter) is not populated in all
code paths

7.18

Specifying parameters by order
rather by assignment, where there
are more than four parameters
When calling a stored procedure, it is generally better to pass in
parameters by assignment rather than just relying on the order in
which the parameters are defined within the procedure. This makes
the code easier to understand and maintain. As with all rules, there
are exceptions: It doesn’t really become a problem when there
are less than a handful of parameters. Also, natively compiled
procedures work fastest by passing in parameters by order.

EI018 Missing parameter(s) name in procedure call

7.19

Try to avoid using hardcoded
references to other databases
There is nothing wrong in executing procedures in other databases,
but it is better to avoid hardcoding these references and use
synonyms instead.

EI016 Reference to procedure in other database

7.20

http://msdn.microsoft.com/en-us/library/dd172136(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd172136(v=vs.100).aspx
https://documentation.red-gate.com/codeanalysis/execution-rules/ei018
https://documentation.red-gate.com/codeanalysis/execution-rules/ei016

52

Use of a Hardcoded current
database name in a procedure call
You only need to specify the database when calling a procedure
in a different database. It is better to avoid using hardcoded
references to the current database as this causes problems if
you later do the inconceivable by changing the databases name
or cut-and-pasting a routine. There is no performance advantage
whatsoever in specifying the current database if the procedure is in
the same database.

EI017 Hardcoded current database name in procedure call

7.21

Setting the QUOTED_IDENTIFIER or
ANSI_NULLS options inside stored
procedures
Stored procedures use the SET settings specified at execute time,
except for SET ANSI_NULLS and SET QUOTED_IDENTIFIER. Stored
procedures that specify either the SET ANSI_NULLS or SET
QUOTED_IDENTIFIER use the setting specified at stored procedure
creation time. If used inside a stored procedure, any such SET
command is ignored.

MI008 QUOTED_IDENTIFIERS option inside stored procedure,
trigger or function

7.22

https://documentation.red-gate.com/codeanalysis/execution-rules/ei017
https://documentation.red-gate.com/codeanalysis/miscellaneous-rules/mi008
https://documentation.red-gate.com/codeanalysis/miscellaneous-rules/mi008

53

Creating a routine with ANSI_
NULLS or QUOTED_IDENTIFIER
options set to OFF
At the time the routine is created (parse time), both options should
normally be set to ON. They are ignored on execution. The reason
for keeping Quoted Identifiers ON is that it is necessary when you
are creating or changing indexes on computed columns or indexed
views. If set to OFF, then CREATE, UPDATE, INSERT, and DELETE
statements on tables with indexes on computed columns or
indexed views will fail. SET QUOTED_IDENTIFIER must be ON when
you are creating a filtered index or when you invoke XML data type
methods. ANSI_NULLS will eventually be set to ON and this ISO
compliant treatment of NULLS will not be switchable to OFF.

DEP028 The SQL module was created with ANSI_NULLS and/or
QUOTED_IDENTIFIER options set to OFF

7.23

Updating a primary key column
Updating a primary key column is not by itself always bad in
moderation. However, the update does come with considerable
overhead when maintaining referential integrity. In addition, if the
primary key is also a clustered index key, the update generates
more overhead in order to maintain the integrity of the table.

7.24

Overusing hints to force a
particular behaviour in joins
Hints do not take into account the changing number of rows in the
tables or the changing distribution of the data between the tables.
The query optimizer is generally smarter than you, and a lot more
patient.

7.25

https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep028
https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep028

54

Using the CHARINDEX function in a
WHERE Clause
Avoid using CHARINDEX in a WHERE clause to match strings if you
can use LIKE (without a leading wildcard expression) to achieve the
same results.

7.26

Using the NOLOCK hint
Avoid using the NOLOCK hint. It is much better and safer to specify
the correct isolation level instead. To use NOLOCK, you would
need to be very confident that your code is safe from the possible
problems that the other isolation levels protect against. The
NOLOCK hint forces the query to use a read uncommitted isolation
level, which can result in dirty reads, non-repeatable reads and
phantom reads. In certain circumstances, you can sacrifice
referential integrity and end up with missing rows or duplicate
reads of the same row.

7.27

Using a WAITFOR DELAY/TIME
statement in a routine or batch
SQL routines or batches are not designed to include artificial
delays. If many WAITFOR statements are specified on the same
server, too many threads can be tied up waiting. Also, including
WAITFOR will delay the completion of the SQL Server process and
can result in a timeout message in the application. Sometimes, a
transaction that is the victim of a deadlock can be re-executed after
a very short delay, and you’ll find a WAIT used for this, which is
legitimate.

MI007 WAIT FOR DELAY/TIME used

7.28

https://documentation.red-gate.com/codeanalysis/miscellaneous-rules/mi007

55

Using SET ROWCOUNT to specify
how many rows should be returned
We had to use this option until the TOP clause (with ORDER BY)
was implemented. The TOP option is much easier for the query
optimizer.

DEP014 SET ROWCOUNT option is deprecated

7.29

Using TOP 100 PERCENT in views,
inline functions, derived tables,
subqueries, and common table
expressions (CTEs)
This is usually a reflex action to seeing the error ‘The ORDER
BY clause is invalid in views, inline functions, derived tables,
subqueries, and common table expressions, unless TOP or FOR
XML is also specified’. The message is usually a result of your
ORDER BY clause being included in the wrong statement. You
should include it only in the outermost query.

7.30

https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep014

56

CREATE FUNCTION dbo.CurrencyTable(@Region VARCHAR(20)

= ‘%’)

--returns the currency for the region, supports

wildcards

--SELECT * FROM dbo.CurrencyTable(DEFAULT) returns all

--SELECT * FROM dbo.CurrencyTable(‘%Slov%’)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN

(

SELECT TOP 100 PERCENT CountryRegion.Name AS

country, Currency.Name AS currency

FROM Person.CountryRegion

INNER JOIN Sales.CountryRegionCurrency

ON CountryRegion.CountryRegionCode =

CountryRegionCurrency.CountryRegionCode

INNER JOIN Sales.Currency

ON CountryRegionCurrency.CurrencyCode = Currency.

CurrencyCode

WHERE CountryRegion.Name LIKE @Region

ORDER BY Currency.Name

);

);

Not specifying the Schema name
for a procedure
Usually, performance is slightly better if you specify the schema,
but in certain cases, you need versions of the same stored
procedure to be different depending on the user role. You can put
different SPs of the same name in different schemas. You then
need to specify the stored procedure without the schema because
sql server will then choose the stored procedure from the schema
associated with the role of the user.

7.31

57

Duplicating names of objects of
different types
Although it is sometimes necessary to use the same name for the
same type of object in different schemas, it is never necessary to
do it for different object types and it can be very confusing. You
would never want a SalesStaff table and SalesStaff view and
SalesStaff stored procedure.

7.32

Using WHILE (not done) loops
without an error exit
WHILE loops must always have an error exit. The condition that
you set in the WHILE statement may remain true even if the loop is
spinning on an error. You can create a deadlock by running a query
that includes a WAITFOR statement within a transaction that also
holds locks to prevent changes to the rowset that the WAITFOR
statement is trying to access.

7.33

Using a PRINT statement or
statement that returns a result in a
trigger
Triggers are designed for enforcing data rules, not for returning
data or information. Developers often embed PRINT statements in
triggers during development to provide a crude idea of how the
code is progressing, but the statements need to be removed or
commented out before the code is promoted beyond development.

PE011 PRINT statement is used in trigger

7.34

https://documentation.red-gate.com/codeanalysis/performance-rules/pe011

58

SELECT statement in trigger that
returns data to the client
Although it is possible to do, it is unwise. A trigger should never
return data to a client. It is possible to place a SELECT statement in
a trigger but it serves no practical useful purpose, and can have
unexpected effects. A trigger behaves much like a stored
procedure in that, when the trigger fires, results can be returned
to the calling application. This requires special handling because
these returned results would have to be handled in some way,
and this would have to be written into every application in which
modifications to the trigger table are allowed.

BP003 SELECT in trigger

7.35

Using TOP without ORDER BY
Using TOP without an ORDER BY clause in a SELECT statement is
meaningless and cannot be guaranteed to give consistent results.
because asking for the TOP 10 rows implies a certain order,
and tables have no implicit logical order.

BP006 TOP without ORDER BY

7.36

Using a CASE statement without
the ELSE clause
Always specify a default option even if you believe that it is
impossible for that condition to happen. Someone might change
the logic, or you could be wrong in thinking a particular outcome is
impossible.

BP012 CASE without ELSE

7.37

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp003
https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp006
https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp012

59

Using EXECUTE(string)
Don’t use EXEC to run dynamic SQL. It is there only for backward
compatibility and is a commonly used vector for SQL injection. Use
sp_executesql instead because it allows parameter substitutions
for both inputs and outputs and also because the execution plan
that sp_executesql produces is more likely to be reused.

BP013 EXECUTE(string) is used

7.38

Using the GROUP BY ALL <column>,
GROUP BY <number>, COMPUTE, or
COMPUTE BY clause
The GROUP BY ALL <column> clause and the GROUP BY <number>
clause are deprecated. There are other ways to perform these
operations using the standard GROUP BY and GROUPING syntax.
The COMPUTE and COMPUTE BY operations were devised for
printed summary results. The ROLLUP and CUBE clauses are a
better alternative.

7.39

Using numbers in the ORDER BY
clause to specify column order
It is certainly possible to specify nonnegative integers to represent
the columns in an ORDER BY clause, based on how those columns
appear in the select list, but this approach makes it difficult to
understand the code at a glance and can lead to unexpected
consequences when you forget you’ve done it and alter the order of
the columns in the select list.

DEP003 GROUP BY ALL clause is deprecated

7.40

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp013
https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep003

60

Using unnecessary three-part and
four-part column references in a
select list
Sometimes, when a table is referenced in another database or
server, programmers believe that the two or three-part table name
needs to be applied to the columns. This is unnecessary and
meaningless. Just the table name is required for the columns.
Three-part column names might be necessary in a join if you have
duplicate table names, with duplicate column names, in different
schemas, in which case, you ought to be using aliases. The same
goes for cross-database joins.

DEP026 Three-part and four-part column references in SELECT
list are deprecated

7.41

Using RANGE rather than ROWS in
SQL Server 2012
The implementation of the RANGE option in a window frame
ORDER BY clause is inadequate for any serious use. Stick to the
ROWS option whenever possible and try to avoid ordering without
framing.

7.42

Doing complex error-handling in a
transaction before the ROLLBACK
command
The database engine releases locks only when the transaction is
rolled back or committed. It is unwise to delay this because other
processes may be forced to wait. Do any complex error handling
after the ROLLBACK command wherever possible.

7.43

https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep026
https://documentation.red-gate.com/codeanalysis/deprecated-syntax-rules/dep026

61

Use of BEGIN TRANSACTION
without ROLLBACK TRANSACTION
ROLLBACK TRANSACTION rolls back a transaction to the beginning
of it, or to a savepoint inside the transaction. You don’t need a
ROLLBACK TRANSACTION statement within a transaction, but if
there isn’t one, then it may be a sign that error handling has not
been refined to production standards.

EI019 BEGIN TRANSACTION without ROLLBACK TRANSACTION

7.44

Use of ROLLBACK TRANSACTION
without BEGIN TRANSACTION
It is possible to have a ROLLBACK TRANSACTION within a block
where there is no explicit transaction. This will trigger an error if the
code is executed outside a transaction, and suggests that
transactions are being held open unnecessarily.

EI020 ROLLBACK TRANSACTION without BEGIN TRANSACTION

7.45

Not defining a default value for a
SELECT assignment to a variable
If an assignment is made to a variable within a SELECT … FROM
statement and no result is returned, that variable will retain its
current value. If no rows are returned, the variable assignment
should be explicit, so you should initialise the variable with a
default value.

7.46

https://documentation.red-gate.com/codeanalysis/execution-rules/ei019
https://documentation.red-gate.com/codeanalysis/execution-rules/ei020

62

Not defining a default value for a
SET assignment that is the result of
a query
If a variable’s SET assignment is based on a query result and the
query returns no rows, the variable is set to NULL. In this case, you
should assign a default value to the variable unless you want it to
be NULL.

7.47

The value of a nullable column is
not checked for NULLs when used
in an expression
If you are using a nullable column in an expression, you should
use a COALESCE or CASE expression or use the ISNULL(column,
default_value) function to first verify whether the value is NULL.

7.48

Using the NULLIF expression
The NULLIF expression compares two expressions and returns
the first one if the two are not equal. If the expressions are equal
then NULLIF returns a NULL value of the data type of the first
expression. NULLIF is syntactic sugar. Use the CASE statement
instead so that ordinary folks can understand what you’re trying to
do. The two are treated identically.

7.49

63

Not putting all the DDL statements
at the beginning of the batch
Don’t mix data manipulation language (DML) statements with
data definition language (DDL_statements. Instead, put all the DDL
statements at the beginning of your procedures or batches.

PE010 Interleaving DDL and DML in stored procedure/trigger

7.50

Using meaningless aliases for
tables (e.g., a, b, c, d, e)
Aliases aren’t actually meant to cut down on the typing but rather
to make your code clearer. To use single characters is antisocial.

7.51

Variable type is not fully
compatible with procedure
parameter type
A parameter passed to a procedure or function must be of a
type that can be cast into the variable datatype declared for that
parameter in the body of the routine. It should be of exactly the
same type so as to avoid the extra processing to resolve an implicit
conversion.

EI001 Incompatible variable type for procedure call

7.52

https://documentation.red-gate.com/codeanalysis/performance-rules/pe010
https://documentation.red-gate.com/codeanalysis/execution-rules/ei001

64

Literal type is not fully compatible
with procedure parameter type
A parameter passed to a procedure can be a literal (e.g. 1,’03
jun 2017’ or ‘hello world’) but it must be possible to cast it
unambiguously to the variable datatype declared for that parameter
in the body of the routine.

EI002 Incompatible literal type for procedure call

7.53

Subquery may return more than one
row
A subquery can only be scalar, meaning that it can return just one
value. Even if you correctly place just one expression in your select
list, you must also ensure that just one row is returned. TOP 1 can
be used if there is an ORDER BY clause.

EI003 Non-scalar subquery in place of a scalar

7.54

A named parameter is not found in
parameter list of a procedure
Parameters can be passed by position in a comma-delimited list, or
by name, where order position isn’t required. Any parameters that
are specified by name must have the name identical to the
definition for that procedure.

EI004 Extra parameter passed

7.55

https://documentation.red-gate.com/codeanalysis/execution-rules/ei002
https://documentation.red-gate.com/codeanalysis/execution-rules/ei003
https://documentation.red-gate.com/codeanalysis/execution-rules/ei004

65

Use of the position notation after
the named notation for parameters
when calling a procedure
Parameters can be passed by position in a comma-delimited list, or
by name, but it is a bad idea to mix the two methods even when it is
possible. If a parameter has a default value assigned to it, it can be
left out of the parameter list, and it is difficult to check whether the
values you supply are for the parameters you intend.

EI005 Unnamed call after named call

7.56

Parameter is not passed to a
procedure and no default is
provided
With procedures and functions, parameters can be assigned
default values that are used when a value isn’t passed for that
parameter when calling the procedure. However, if a parameter isn’t
assigned a value and there is no default provided it is an error. If
you don’t want to provide a value and a default is provided, use the
DEFAULT keyword to specify that the default value should be
used.

EI006 Required parameter is not passed

7.57

https://documentation.red-gate.com/codeanalysis/execution-rules/ei005
https://documentation.red-gate.com/codeanalysis/execution-rules/ei006

66

Procedure parameter is not defined
as OUTPUT, but marked as OUTPUT
in procedure call statement
Output scalar parameters for procedures are passed to the
procedure, and can have their value altered within the procedure.
This allows procedures to return scalar output. The formal
parameter must be declared as an OUTPUT parameter if the actual
parameter that is passed had the OUTPUT keyword. This triggers
an error.

EI007 Call parameter declared as output

7.58

Procedure parameter is defined
as OUTPUT, but is not marked
as OUTPUT in procedure call
statement
Output scalar parameters for procedures are passed to the
procedure, and can have their value altered within the procedure.
This allows procedures to return scalar output. However, the
matching variable passed as the output parameter in the module or
command string must also have the keyword OUTPUT. There is no
error but the resultant value is NULL, which you are unlikely to want.

EI008 Call parameter is not declared as output

7.59

https://documentation.red-gate.com/codeanalysis/execution-rules/ei007
https://documentation.red-gate.com/codeanalysis/execution-rules/ei008

67

Number of passed parameters
exceeds the number of procedure
parameters
Parameters can be passed to procedures and functions in
an ordered delimited list, but never more than the number of
parameters. For a function, this must have the same number of list
members as the parameters. For a procedure you can have fewer if
defaults are declared in parameters.

EI009 Call has more parameters than required

7.60

https://documentation.red-gate.com/codeanalysis/execution-rules/ei009

68

Security Loopholes8

Using SQL Server logins, especially
without password expirations or
Windows password policy
Sometimes you must use SQL Server logins. For example, with
Microsoft Azure SQL Database, you have no other option, but it isn’t
satisfactory. SQL Server logins and passwords have to be sent
across the network and can be read by sniffers. They also require
passwords to be stored on client machines and in connection
strings. SQL logins are particularly vulnerable to a brute-force
attacks. They are also less convenient because the SQL Server
Management Studio (SSMS) registered servers don’t store
password information and so can’t be used for executing SQL
across a range of servers. Windows-based authentication is far
more robust and should be used where possible.

8.1

Using the xp_cmdshell system
stored procedure
Use xp_cmdshell in a routine only as a last resort, due to the
elevated security permissions they require and consequential
security risk. The xp_cmdshell procedure is best reserved for
scheduled jobs where security can be better managed.

8.2

69

Authentication set to Mixed Mode
Ensure that Windows Authentication Mode is used wherever
possible. SQL Server authentication is necessary only when a
server is remote or outside the domain, or if third-party software
requires SQL authentication for remote maintenance. Windows
Authentication is less vulnerable, and avoids having to transmit
passwords over the network or store them in connection strings.

8.3

Using dynamic SQL without the
WITH EXECUTE AS clause
Because of ownership chaining and SQL injection risks, dynamic
SQL requires constant vigilance to ensure that it is used only as
intended. Use the EXECUTE AS clause to ensure the dynamic SQL
code inside the procedure is executed only in the context you
expect, and use loginless users with just the specific permissions
required but no others in the EXECUTE AS clause.

8.4

Using dynamic SQL with the
possibility of SQL injection
SQL injection can be used not only from an application but
also by a database user who lacks, but wants, the permissions
necessary to perform a particular role, or who simply wants to
access sensitive data. If dynamic SQL is executed within a stored
procedure, under the temporary EXECUTE AS permission of a user
with sufficient privileges to create users, and it can be accessed
by a malicious user, then suitable precautions must be taken
to make this impossible. These precautions start with giving
EXECUTE AS permissions only to WITHOUT LOGIN users with
leastnecessary permissions, and using sp_ExecuteSQL with
parameters rather than EXECUTE.

BP013 EXECUTE(string) is used

8.5

https://documentation.red-gate.com/codeanalysis/best-practice-rules/bp013

Acknowledgements
For a booklet like this, it is best to go with the
established opinion of what constitutes a SQL Code
Smell. There is little room for creativity. In order to
identify only those SQL coding habits that could, in some
circumstances, lead to problems, I must rely on the help
of experts, and I am very grateful for the help, support
and writings of the following people in particular.

Dave Howard
Merrill Aldrich
Plamen Ratchev
Dave Levy
Mike Reigler
Anil Das
Adrian Hills
Sam Stange
Ian Stirk
Aaron Bertrand
Neil Hambly
Matt Whitfield

Nick Harrison
Bill Fellows
Jeremiah Peschka
Diane McNurlan
Robert L Davis
Dave Ballantyne
John Stafford
Alex Kusnetsov
Gail Shaw
Jeff Moden
Joe Celko
Robert Young

And special thanks to our technical referees,
Grant Fritchey and Jonathan Allen.

71

Avoid code smells with
comprehensive code analysis
in these Redgate tools.

Write, format, analyze and refactor your SQL effortlessly.

Code analysis in SQL Prompt provides fast and comprehensive analysis of T-SQL
code in SSMS and Visual Studio.

• Discover code smells and hidden pitfalls as you type
• Get clear explanations and suggestions to improve your code
• Choose from a large selection of analysis rules
• Encourage good coding practices and standards by sharing a set of code

analyses rules with your team.

Learn more: www.red-gate.com/sql-prompt

A monitoring tool that helps teams looking after SQL Server environments be more
proactive. Not only does SQL Monitor alert you to current issues, it gives you the
information you need to stop them happening in the future.

• Code analysis performance rules are highlighted in SQL Monitor when
you inspect QUERY DETAILS alerting you to use of SQL that could cause
performance problems.

Learn more: www.red-gate.com/sql-monitor

https://www.red-gate.com/products/sql-development/sql-prompt/
https://www.red-gate.com/products/sql-development/sql-prompt/
https://www.red-gate.com/products/dba/sql-monitor/
https://www.red-gate.com/products/dba/sql-monitor/

